ΑP	Calculus	- Review	63	AB	Name	
----	----------	----------	----	----	------	--

- 1) To the nearest dollar, how much must a 25 year old invest now at 870 to have \$40000 at age 60? A=Pert (looks like y=yokt).
- 2) dy = y is a family of A) parabelas c) hyperbolas perponentials

 B) straight lines b) ellipses
- 3) A solution of the differential equation y dy = x dx could be A) $x^2-y^2=4$ c) $y^2=4x^2$ E) $x^2+y^2=9$ B) $x^2+y^2=4$ D) $x^2-4y^2=0$.
- 4) An element has a half-life of 22 years, How long will it take for 10% of the original amount to be left,
- 5) The population of a city increases proportionally to the population at that time. If the city has 20000 in 2000 and 40000 in 2016
 - A) How many would you expect in 2032?
 - B) In what year would you expect the population to hit 50000
- 6) A cup of coffee at 180°F is placed on a table in a 68°F room. If $\frac{dy}{dt} = -011(y-68)$, the temperature of the coffee in 10 minutes is (in °F)

 A) 96 B) 100 c) 105 B) 110 B) 115
- The realest integer at t=10 y=1000, find y to

- 8) Given dy = 4-1 where x ≠0
 - A) Draw the slope field at the dots only.

9 If
$$\frac{dh}{dt} = \frac{1}{5}\sqrt{h}$$
 write h as a function of t given $h=17$ at $t=0$.

b)
$$\frac{dG}{dt} = -.056G$$
 If $G = 2000$ at $t = 0$ find G at $t = 40$.

Score:

Answers

1.
$$(2p^3 + 5p^2 - 4) \times (3p + 1)$$
 = $6p^4 + 17p^3 + 5p^2 - 12p - 4$

2.
$$(p^2 + 5p + 2) \times (3p^2 + p)$$
 = $3p^4 + 16p^3 + 11p^2 + 2p$

3.
$$(q^4 - 3q^3 + 1) \times (-q^2)$$
 = $-q^6 + 3q^5 - q^2$

4.
$$(-s^2 + 5) \times (s^3 - 7)$$
 = $-s^5 + 5s^3 + 7s^2 - 35$

5.
$$(2s+3) \times (s^2+4s+3)$$
 = $2s^3+11s^2+18s+9$

6.
$$(x^3 + 2x^2) \times (7x + 4)$$
 = $7x^4 + 18x^3 + 8x^2$

7.
$$(t^2 - 3t + 5) \times (t - 1)$$
 = $t^3 - 4t^2 + 8t - 5$

8.
$$(5y^2 - 3) \times (y^3 + 2)$$
 = $5y^5 - 3y^3 + 10y^2 - 6$

9.
$$(p^4 + 3p^2 - 8) \times (p + 1)$$
 = $p^5 + p^4 + 3p^3 + 3p^2 - 8p - 8$

10.
$$(-t^3 + 3t) \times (-3t^2 + 2t)$$
 = $3t^5 - 2t^4 - 9t^3 + 6t^2$

Score:

1.
$$(2p^3 + 5p^2 - 4) \times (3p + 1) =$$

2.
$$(p^2 + 5p + 2) \times (3p^2 + p) =$$

3.
$$(q^4 - 3q^3 + 1) \times (-q^2)$$

4.
$$(-s^2 + 5) \times (s^3 - 7)$$

5.
$$(2s+3) \times (s^2+4s+3)$$

6.
$$(x^3 + 2x^2) \times (7x + 4)$$

7.
$$(t^2 - 3t + 5) \times (t - 1)$$

8.
$$(5y^2 - 3) \times (y^3 + 2)$$
 = _____

9.
$$(p^4 + 3p^2 - 8) \times (p+1)$$

10.
$$(-t^3 + 3t) \times (-3t^2 + 2t)$$
 = _____

Score:

1.
$$(2p^3 + 5p^2 - 4) \times (3p + 1) =$$

2.
$$(p^2 + 5p + 2) \times (3p^2 + p)$$

3.
$$(q^4 - 3q^3 + 1) \times (-q^2)$$
 = _____

4.
$$(-s^2 + 5) \times (s^3 - 7)$$

5.
$$(2s+3) \times (s^2+4s+3)$$

6.
$$(x^3 + 2x^2) \times (7x + 4)$$
 = _____

7.
$$(t^2 - 3t + 5) \times (t - 1)$$

8.
$$(5y^2 - 3) \times (y^3 + 2)$$
 = _____

9.
$$(p^4 + 3p^2 - 8) \times (p+1)$$

10.
$$(-t^3 + 3t) \times (-3t^2 + 2t)$$
 = _____

Score:

1.
$$(2p^3 + 5p^2 - 4) \times (3p + 1) =$$

2.
$$(p^2 + 5p + 2) \times (3p^2 + p)$$

3.
$$(q^4 - 3q^3 + 1) \times (-q^2)$$
 = _____

4.
$$(-s^2 + 5) \times (s^3 - 7)$$

5.
$$(2s+3) \times (s^2+4s+3) =$$

6.
$$(x^3 + 2x^2) \times (7x + 4)$$
 = _____

7.
$$(t^2 - 3t + 5) \times (t - 1)$$

8.
$$(5y^2 - 3) \times (y^3 + 2)$$

9.
$$(p^4 + 3p^2 - 8) \times (p+1)$$
 = _____

10.
$$(-t^3 + 3t) \times (-3t^2 + 2t)$$
 = _____

Score:

1.
$$(2p^3 + 5p^2 - 4) \times (3p + 1) =$$

2.
$$(p^2 + 5p + 2) \times (3p^2 + p) =$$

3.
$$(q^4 - 3q^3 + 1) \times (-q^2)$$

4.
$$(-s^2 + 5) \times (s^3 - 7)$$

5.
$$(2s+3) \times (s^2+4s+3) =$$

6.
$$(x^3 + 2x^2) \times (7x + 4)$$

7.
$$(t^2 - 3t + 5) \times (t - 1)$$
 = _____

8.
$$(5y^2 - 3) \times (y^3 + 2)$$

9.
$$(p^4 + 3p^2 - 8) \times (p+1)$$
 = _____

10.
$$(-t^3 + 3t) \times (-3t^2 + 2t)$$
 = _____

Score:

1.
$$(2p^3 + 5p^2 - 4) \times (3p + 1)$$
 = _____

2.
$$(p^2 + 5p + 2) \times (3p^2 + p) =$$

3.
$$(q^4 - 3q^3 + 1) \times (-q^2)$$
 = _____

4.
$$(-s^2 + 5) \times (s^3 - 7)$$

5.
$$(2s+3) \times (s^2+4s+3) =$$

6.
$$(x^3 + 2x^2) \times (7x + 4)$$

7.
$$(t^2 - 3t + 5) \times (t - 1)$$
 = _____

8.
$$(5y^2 - 3) \times (y^3 + 2)$$

9.
$$(p^4 + 3p^2 - 8) \times (p+1)$$

10.
$$(-t^3 + 3t) \times (-3t^2 + 2t)$$

CALCULUS AB SECTION II, Part A

Time—30 minutes
Number of problems—2

A graphing calculator is required for these problems.

t (hours)	0	1	3	6	8
R(t) (liters / hour)	1340	1190	950	740	700

- 1. Water is pumped into a tank at a rate modeled by $W(t) = 2000e^{-t^2/20}$ liters per hour for $0 \le t \le 8$, where t is measured in hours. Water is removed from the tank at a rate modeled by R(t) liters per hour, where R is differentiable and decreasing on $0 \le t \le 8$. Selected values of R(t) are shown in the table above. At time t = 0, there are 50,000 liters of water in the tank.
 - (a) Estimate R'(2). Show the work that leads to your answer. Indicate units of measure.
 - (b) Use a left Riemann sum with the four subintervals indicated by the table to estimate the total amount of water removed from the tank during the 8 hours. Is this an overestimate or an underestimate of the total amount of water removed? Give a reason for your answer.
 - (c) Use your answer from part (b) to find an estimate of the total amount of water in the tank, to the nearest liter, at the end of 8 hours.
 - (d) For $0 \le t \le 8$, is there a time t when the rate at which water is pumped into the tank is the same as the rate at which water is removed from the tank? Explain why or why not.

- 2. For $t \ge 0$, a particle moves along the x-axis. The velocity of the particle at time t is given by
 - $v(t) = 1 + 2\sin\left(\frac{t^2}{2}\right)$. The particle is at position x = 2 at time t = 4.
 - (a) At time t = 4, is the particle speeding up or slowing down?
 - (b) Find all times t in the interval 0 < t < 3 when the particle changes direction. Justify your answer.
 - (c) Find the position of the particle at time t = 0.
 - (d) Find the total distance the particle travels from time t = 0 to time t = 3.

END OF PART A OF SECTION II

© 2016 The College Board. Visit the College Board on the Web: www.collegeboard.org.

CALCULUS AB SECTION II, Part B

Time—60 minutes
Number of problems—4

No calculator is allowed for these problems.

Graph of f

- 3. The figure above shows the graph of the piecewise-linear function f. For $-4 \le x \le 12$, the function g is defined by $g(x) = \int_2^x f(t) dt$.
 - (a) Does g have a relative minimum, a relative maximum, or neither at x = 10? Justify your answer.
 - (b) Does the graph of g have a point of inflection at x = 4? Justify your answer.
 - (c) Find the absolute minimum value and the absolute maximum value of g on the interval $-4 \le x \le 12$. Justify your answers.
 - (d) For $-4 \le x \le 12$, find all intervals for which $g(x) \le 0$.

- 4. Consider the differential equation $\frac{dy}{dx} = \frac{y^2}{x-1}$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.

- (b) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(2) = 3. Write an equation for the line tangent to the graph of y = f(x) at x = 2. Use your equation to approximate f(2.1).
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(2) = 3.

- 5. The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by $r = \frac{1}{20}(3 + h^2)$, where $0 \le h \le 10$. The units of r and h are inches.
 - (a) Find the average value of the radius of the funnel.
 - (b) Find the volume of the funnel.
 - (c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is h = 3 inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

- 6. The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.
 - (a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.
 - (b) Let $h(x) = \frac{g(x)}{f(x)}$. Find h'(1).
 - (c) Evaluate $\int_1^3 f''(2x) dx$.

STOP

END OF EXAM